You are describing a compound with the systematic name **2-(2-phenylethyl)benzo[de]isoquinoline-1,3-dione**. This molecule has a complex structure containing a fused ring system and is likely a derivative of a larger chemical family.
**To understand its importance in research, we need to consider the following:**
* **What chemical family does it belong to?** Identifying the parent compound (e.g., benzo[de]isoquinoline-1,3-dione) will give us clues about its potential properties and uses.
* **What are the known activities of this compound family?** For example, some isoquinoline derivatives have been studied for their potential as:
* **Anti-cancer agents:** Some isoquinolines show cytotoxic activity against cancer cells.
* **Anti-inflammatory agents:** Certain isoquinolines can block inflammatory pathways.
* **Neuroactive compounds:** Some isoquinolines interact with neurotransmitter receptors.
* **What specific modifications have been made to the parent molecule?** The addition of the 2-(2-phenylethyl) group might alter the compound's properties in significant ways. This could influence its:
* **Biological activity:** The modification could improve its potency, specificity, or bioavailability.
* **Pharmacokinetic profile:** This refers to how the compound is absorbed, distributed, metabolized, and excreted.
* **Solubility and stability:** The modification could make the compound more or less soluble in biological fluids or more or less stable over time.
**To find out why this specific compound is important for research, you would need to search for its scientific literature.** Look for publications that:
* **Describe the synthesis and characterization of the compound.**
* **Report on its biological activity in various models.**
* **Investigate its mechanism of action.**
* **Explore its potential applications in medicine, agriculture, or other fields.**
**Without additional context, it's impossible to definitively state why this specific compound is important.** It could be a novel compound with potential therapeutic applications or a research tool used to study specific biological pathways.
ID Source | ID |
---|---|
PubMed CID | 7178340 |
CHEMBL ID | 1550511 |
CHEBI ID | 104971 |
Synonym |
---|
AS-871/40018532 |
HMS2643E09 |
MLS000723430 , |
smr000305025 |
2-(2-phenylethyl)-1h-benzo[de]isoquinoline-1,3(2h)-dione |
CHEBI:104971 |
AKOS001595115 |
STK827909 |
CHEMBL1550511 |
F1538-0005 |
2-phenethyl-1h-benzo[de]isoquinoline-1,3(2h)-dione |
2-(2-phenylethyl)benzo[de]isoquinoline-1,3-dione |
2-phenethylbenzo[de]isoquinoline-1,3-quinone |
bdbm78714 |
cid_7178340 |
Q27182640 |
sr-01000080163 |
SR-01000080163-1 |
CCG-343168 |
way-272351 |
Class | Description |
---|---|
isoquinolines | A class of organic heteropolycyclic compound consisting of isoquinoline and its substitution derivatives. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, MAJOR APURINIC/APYRIMIDINIC ENDONUCLEASE | Homo sapiens (human) | Potency | 6.3096 | 0.0032 | 45.4673 | 12,589.2998 | AID2517 |
Chain A, 2-oxoglutarate Oxygenase | Homo sapiens (human) | Potency | 31.6228 | 0.1778 | 14.3909 | 39.8107 | AID2147 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 13.4591 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
Nrf2 | Homo sapiens (human) | Potency | 1.5849 | 0.0920 | 8.2222 | 23.1093 | AID624171 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 5.1714 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 16.7958 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 17.4882 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 35.4813 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 15.8489 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 44.6684 | 0.0366 | 19.6376 | 50.1187 | AID1466; AID2242 |
chromobox protein homolog 1 | Homo sapiens (human) | Potency | 56.2341 | 0.0060 | 26.1688 | 89.1251 | AID540317 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 5.8048 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 15.8489 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
ras-related protein Rab-9A | Homo sapiens (human) | Potency | 5.6234 | 0.0002 | 2.6215 | 31.4954 | AID485297 |
geminin | Homo sapiens (human) | Potency | 14.5810 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
survival motor neuron protein isoform d | Homo sapiens (human) | Potency | 14.1254 | 0.1259 | 12.2344 | 35.4813 | AID1458 |
muscleblind-like protein 1 isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.0041 | 9.9625 | 28.1838 | AID2675 |
Neuronal acetylcholine receptor subunit alpha-4 | Rattus norvegicus (Norway rat) | Potency | 44.6684 | 3.5481 | 18.0395 | 35.4813 | AID1466 |
Neuronal acetylcholine receptor subunit beta-2 | Rattus norvegicus (Norway rat) | Potency | 44.6684 | 3.5481 | 18.0395 | 35.4813 | AID1466 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
ubiquitin-conjugating enzyme E2 N | Homo sapiens (human) | IC50 (µMol) | 20.0000 | 0.8730 | 10.7219 | 78.4000 | AID493155 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID630666 | Cytotoxicity against mouse B16F10 cells after 24 hrs by MTT assay | 2011 | Bioorganic & medicinal chemistry, Nov-01, Volume: 19, Issue:21 | Evaluation of apoptotic effect of cyclic imide derivatives on murine B16F10 melanoma cells. |
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 4 (66.67) | 24.3611 |
2020's | 1 (16.67) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.35) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 6 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |